
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor Thesis in Informatics

Dependency Ordering in the Linux Kernel

Paul Heidekrüger

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor Thesis in Informatics

Dependency Ordering in the Linux Kernel

Abhängigkeitsordnungen im Linux Kernel

Author: Paul Heidekrüger
Supervisor: Prof. Pramod Bhatotia
Advisors: Prof. Pramod Bhatotia, Dr. Marco Elver (Google), Charalampos Mainas
Submission Date: November 15, 2021

I confirm that this bachelor thesis in informatics is my own work and I have documented
all sources and material used.

Munich, November 15, 2021 Paul Heidekrüger

Acknowledgments

Above all, I would like to thank my family for their continuous support and encour-
agement during my studies.

I would like to thank Pramod Bhatotia, Marco Elver and Charalampos Mainas for
taking a chance on me with this thesis, being patient and always being on hand for
discussions and questions in regular meetings. I really enjoy working on this topic
and cannot overstate enough how much I have learnt. I am incredibly thankful for the
opportunity.

Many thanks to Rodrigo Rocha for always having an open ear for LLVM-related
questions, many thanks to Jörg Thalheim for equipping me with the required computing
power and generously helping with NixOS-related questions.

A thank you also goes to Sophia Adelmeier for helping with all administrative
questions regarding my work.

And finally, a nod to Vincent Picking for productive bachelor-thesis co-working
sessions.

In memory of A.H. and K.H.

iv

Abstract

When relevant papers are titled ’Frightening Small Children and Disconcerting Grown-ups:
Concurrency in the Linux Kernel’ [1], it should not surprise that Linux kernel development
often goes a non-standard way of its own. Mainly, this is a result of wanting to meet
the goal of peak performance. One example of this is the Linux kernel memory model
which differs ever so slightly from the C11 memory model.

Over the last couple of years, the Linux kernel community has become increasingly
worried about the chance of compilers, which respect the C11 memory model, introduc-
ing optimisations which break certain dependencies the Linux kernel relies on being
preserved as per its own memory model.

The potential of this happening has been extensively talked about on the Linux
kernel mailing list, but still, discussions have left a real-world example of a dependency
ordering being broken in the Linux kernel to be desired.

We present a means for identifying dependency orderings in the Linux kernel before
compiler optimisations run and checking whether the code was optimised such that a
dependency was lost. Our approach consists of two compiler passes which can be run
when building the Linux kernel with the LLVM Clang compiler.

Our work has already led to a contribution to the Linux kernel mailing list, and we
are confident that based on this work, we will be able to provide a reliable mechanism
for identifying (broken) address and control dependencies in the Linux kernel.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1

2 Background 3
2.1 Introducing Memory Consistency Models 3

2.1.1 Sequential Consistency . 3
2.1.2 Relaxing Memory Consistency . 4

2.2 Memory Consistency Models on the Language Level 5
2.2.1 The C Memory Consistency Model 5

2.3 Memory Consistency Models on the Architecture Level 7
2.3.1 Total Store Ordering . 7
2.3.2 Weak Memory Consistency . 7
2.3.3 Ambiguities in Memory Consistency 9
2.3.4 Mechanisms That Influence Reordering on the Architecture Level 9

2.4 The LLVM Project . 9
2.4.1 The Philosophy of LLVM . 9
2.4.2 An Overview of Clang . 10
2.4.3 LLVM Intermediate Representation 11

2.5 Potentially Broken Dependency Orderings in the Linux Kernel 12
2.5.1 The Linux Kernel Memory Model 12
2.5.2 Clang and the Linux Kernel . 14

3 System Overview 15

4 Design 16
4.1 Source-Level Dependency Orderings in LLVM IR 16
4.2 Algorithmic Approach . 17
4.3 The Annotation Pass . 18
4.4 The Verification Pass . 18
4.5 Breath-First Search for Annotation and Verification of Dependencies . . 18

vi

Contents

4.6 Building the Dependency Chains . 21
4.6.1 Handling Volatile Loads and Stores 21
4.6.2 Interprocedural Analysis . 21

5 Implementation 23
5.1 Infrastructure . 23
5.2 Data Types . 23

5.2.1 Potential_Dependency_Half Objects 23
5.2.2 Dependency_Half Objects . 23
5.2.3 BFS_Context Objects . 23

5.3 The InstVisitor Pattern . 24
5.3.1 The General Instruction Case . 24
5.3.2 The LoadInst and StoreInst Cases 24
5.3.3 The handle_load_store() Function 24
5.3.4 The CallInst Case . 25
5.3.5 The ReturnInst Case . 25
5.3.6 Explicitly Skipped Cases . 26

5.4 Annotation With and Verification of Metadata 26
5.4.1 Representing Dependency Annotations as Strings 26
5.4.2 The addMetadataToPair() and add_annotations() Functions 27
5.4.3 Verifying Dependency Annotations With handle_annotations() . . 27

5.5 Breaking Dependencies for Testing - The insertBug() Function 28
5.6 Determining Reachability . 29
5.7 Printing Broken Dependencies . 29
5.8 Clang Integration . 29
5.9 Running the Passes . 29

6 Evaluation 31
6.1 Experimental Setup . 31
6.2 Overheads . 31
6.3 Current Restrictions . 32
6.4 Testing Our Implementation . 33

6.4.1 Address Dependencies . 33
6.4.2 Control Dependencies . 35

6.5 Findings . 36
6.5.1 Annotated Versus Verified Dependencies 36
6.5.2 Dependencies Flagged as Potentially Broken 36

6.6 Implementation Improvements . 36

vii

Contents

7 Related Work 38
7.1 Addressing Consume Semantics on the Language Level 38
7.2 Linux Kernel-Specific Approaches . 38
7.3 Rust in the Linux Kernel . 38
7.4 XNU-Darwin Kernel . 38

8 Future Work 40

9 Conclusion 41

List of Figures 42

List of Algorithms 44

Bibliography 45

viii

1 Introduction

When researching concurrency, one will quickly enter the realms of what Linus Torvalds
considers the rocket science of computer science [2]. Oh no.

However, although not intended, it appears to be a fitting description for Linux kernel
development, which, like rocket construction, often faces problems of a nature common
standards cannot address to the engineers’ satisfaction. One instance where the Linux
kernel, quite literally, deviates from common standards is its memory consistency
model - the Linux Kernel Memory Model (LKMM) - which governs the behaviour
of concurrent code when shared memory is accessed. Differences to the C-language
memory consistency model are subtle [3], but with compiler optimisations becoming
increasingly sophisticated, there exists a chance of optimisations leading to undesired
and hard-to-debug behaviour in Linux kernel code.

A concrete case where the differences in memory consistency models could lead to
bugs is that of a read -> read or read -> write address dependency. The Linux kernel
relies on such accesses to shared memory being ordered by the architecture. One,
granted, artificial example that has been discussed among Linux kernel developers is
that where an address dependency could be transformed into a control dependency
because the compiler was able to infer some property which the result of the first load
might have [4]. Such a transformation is shown in 1.1 and 1.2.

By converting the address dependency in 1.1 into a control dependency such as in 1.2,
a weakly ordered architecture - such as arm64 or Power - could speculate the if branch
before x = READ_ONCE(*foo) becomes observable, making bar available and allowing
y = READ_ONCE(*bar) to be speculatively executed, thereby breaking dependency
ordering.

In fact, the transformation of address to control dependencies is not necessary for
reordering to become a problem. Compilers might apply similar optimisations for

x = READ_ONCE(*foo);
bar = &x[42];
y = READ_ONCE(*bar);

Figure 1.1: A simple address dependency from y to x [4]

1

1 Introduction

x = READ_ONCE(*foo);
if (x == baz)

bar = &baz[42];
else

bar = &x[42];
y = READ_ONCE(*bar);

Figure 1.2: A transformation of 1.1 into the above control dependency would break the
desired instruction ordering [4]

#define MAX 1

x = READ_ONCE(*foo);
if (x % MAX == 0)

WRITE_ONCE(*bar, 1);

Figure 1.3: A control dependency with a constant conditional branch, giving way to
optimisations which could remove conditional branching [6]

existing read -> write control dependencies, breaking the conditional dependency
between the two memory accesses. Read -> read control dependencies are generally
not ordered and therefore not considered [5].

Again, the artificial example in 1.3 shows how such a transformation could look: the
write is dependent on the read through the if condition. Since the condition evaluates
to a constant, a compiler could optimise it away, leaving no more dependency between
the read and the write and allowing architectures to reorder the memory accesses. At
several occasions [7] [8] [4], the community has expressed the need for a tool to identify
such broken dependency orderings with the value proposition being twofold. Firstly,
such a tool would help finding and addressing broken dependencies in the Linux
kernel, and secondly, it would bring the additional advantage of being able to present
concrete cases of broken dependencies in the Linux kernel to the C standard committee
as a base for discussing C memory consistency model revisions in favour of LKMM.
That compilers break control dependencies as shown in 1.3 has been demonstrated and
discussed in the context of LLVM [9]. However, there exists no mechanism to identify
broken dependencies as part of compilation.

This thesis presents two LLVM passes, which are able to identify a subset of broken
dependencies when building the Linux kernel with the LLVM Clang compiler.

2

2 Background

In the following, we cover memory consistency models, LLVM and the potential
problem of broken dependency orderings in the Linux kernel. If possible, we follow a
top-down approach for the levels of abstraction.

2.1 Introducing Memory Consistency Models

Computer science has come up with abstractions, namely memory consistency models
(MCMs), commonly referred to as memory models, to reason about concurrent code
and make sense of the reordering of instructions done by modern compilers and
architectures. To borrow a definition from [10]:

[A Memory Consistency Model] formally specifies how the memory system
will appear to the programmer. Essentially, a memory consistency model
restricts the values that a read can return.

The Linux kernel documentation [5] outlines two additional intuitions. One, a memory
consistency model can be used to verify that, given a piece of code and a set of values,
a given outcome is or is not possible. Two, a memory consistency model can be
understood as an oracle, which, given a piece of code, can predict potential outcomes.
Both intuitions are equivalent. Different MCMs assure different levels of consistency.
MCMs are loosely categorised by the restrictions they place on reordering, where a
stronger MCM leaves less room for reordering than a weaker MCM.

2.1.1 Sequential Consistency

One of the stronger and more intuitive guarantees any MCM can make is that of
sequential consistency. Its definition goes back to [11] and states the following.

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

3

2 Background

x = 0, y = 0

T1() {
STORE(4, x)
yp = READ(y)

}
T2(){

STORE(2, y)
xp = READ(x)

}

Figure 2.1: An abstract example where reordering can become a problem

Given the abstract example in 2.1, a sequentially consistent execution path would be
to execute the two threads one after another. Starting with T1, this would lead to the
outcome (xp=4, yp=0). Another sequentially consistent execution could be a round-robin
alternation between T1 and T2, executing one instruction at a time. Starting with T1,
this would lead to the outcome (xp=4, yp=4). The outcome (xp=0, yp=0) cannot be the
result of a sequentially consistent execution as it implies that both READ instructions
ran before the corresponding STORE instructions to x and y respectively, thereby not
adhering to the programme order. In this example, if a value is written by a thread, it
becomes immediately visible to all other threads. [12]

2.1.2 Relaxing Memory Consistency

Sequential consistency is not desirable when running performance-critical code as it
can impose unnecessary restrictions on reordering. 2.2 modifies 2.1 such that requiring
the execution of T2 to be sequentially consistent would not be necessary as it would
not affect its result. In T1 on the other hand, the READ instruction now depends on the
preceding STORE instruction. Ordering is therefore desired.

Considering the ’is succeeded by’ relation on the programme order as shown in 2.3,
we end up with four possible orderings which can be preserved: r →succ r, r →succ w,
w→succ r and w→succ w. We can relax memory consistency by allowing more outcomes
to occur. For instance, permitting non-dependent writes to be ordered ahead of reads
would break w→succ r. In 2.1, this would enable the outcome (xp=0, yp=0). We will see
that this in fact common practice for modern computing architectures.

4

2 Background

x = 0, y = 0, z = 0

T1() {
STORE(4, x)
yp = READ(y)

}

T2(){
STORE(2, y)
zp = READ(z)

}

Figure 2.2: A modified version of 2.1 where a sequentially consistent execution would
not be required

x, y ∈ {r, w} : x →succ y ⇐⇒ x comes be f ore y in programme order

Figure 2.3: The ’is succeeded by’ relation

2.2 Memory Consistency Models on the Language Level

An MCM may apply to either the architecture or source level in the abstract computing
stack. Both are strongly intertwined as toolchains must respect the source-level MCM
when compiling source code for a target architecture with an MCM of its own. Compil-
ers then insert, if necessary, memory barriers to make the code behave as intended by
the programmer when compiling for a supported target architecture.

2.2.1 The C Memory Consistency Model

Concurrency, in the form of threads and atomics, became a part of the C program-
ming language with the introduction of the C11 standard in 2011. As C does not
guarantee atomicity for all operations on variables from C11 onwards - this gener-
ally depends on the architecture - using the atomics library is non-negotiable for
avoiding data races in concurrent C code. Programmers can provide memory order
arguments to memory accesses, specifying how atomic and non-atomic memory ac-
cesses are ordered against atomic memory accesses. C11 and beyond support five
different memory orders, ranging from memory_order_relaxed, which imposes no limits
on reordering, leaving the execution order up to compilers and the architecture, to
memory_order_seq_cst, guaranteeing a sequentially consistent execution [13]. If not

5

2 Background

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_seq_cst

Figure 2.4: C11’s memory orders [13]

specified otherwise, memory_order_seq_cst is attached to atomic operations in C by
default, sacrificing performance in favour of preventing unexpected outcomes.

Of specific interest to us are memory_order_release, memory_order_consume and mem-
ory_order_acquire. Where the former, being attached to an atomic write, is often paired
with one of the latter, being attached to an atomic read from the same variable.

Release-Acquire Guarantees

memory_order_release can be passed to an atomic store s in a thread T1 as an optional
argument, guaranteeing that all load and store operations that come before s in a
given thread also happen before s at runtime. We observe that this does not pose any
additional restrictions on the loads and stores before s, nor does it prevent load and
store operations which come after s in programme order from being observable before s
at runtime. memory_order_acquire poses similar restrictions, only this time, it is attached
to an atomic read r in thread T2. It guarantees that no reads and writes that come after
r in the programme order of T2 become observable before r at runtime. Again, this
does not exclude load or store operations that come before r in programme order from
becoming observable after r at runtime. It is common to use release and acquire orders
together, guaranteeing that all instructions starting at r in T2 are able to observe the
results of all memory accesses that happen up to s in T1.

Addressing the Elephant in the Room - memory_order_consume

memory_order_consume is identical to memory_order_acquire except that it only affects
dependent memory accesses. Instead of all loads and stores, now only those which
depend on the memory_order_consume operation are constrained. Notice that acquire
semantics imply consume semantics; if all accesses are constrained, then the dependent
accesses are constrained. One shortcoming of current C compilers is that they make use
of this convenience by promoting every memory_order_consume to a memory_order_acquire,
thereby leaving performance optimisations on the table as additional constraints are
imposed which the programmer explicitly wanted to avoid. [13]

6

2 Background

2.3 Memory Consistency Models on the Architecture Level

Whilst language-level memory models are more generic and architecture-independent,
architecture-level memory models are concerned with the instruction order at runtime.

2.3.1 Total Store Ordering

The strongest consistency guarantee one can encounter in today’s computing architec-
tures is that of Total Store Ordering (TSO), which appears in X86 or SPARC architectures
[14] [15]. TSO guarantees that values are always written to memory in the order in
which the store instructions ran in the corresponding thread and that every thread
always has access to its most recent store when loading from the same memory location.
However, it places no guarantee on the order of memory loads from different addresses
in relation to writes and when writes to memory become visible to other threads. It
achieves this by maintaining a FIFO queue for every thread, which holds values that
ought to be written to memory. The FIFO property of the queue guarantees that values
are written in the order in which they are executed and that they become visible to all
other threads at the same time. When loading a value, a thread checks its FIFO queue
first before accessing memory. This means that every thread has its own view of the
current memory state. That is, a unification of the values in memory and the writes
performed by the given thread thus far. [12] has abstracted TSO’s properties such that
it can be visualised as in 2.5. In particular, TSO allows for the outcome (xp=0, yp=0) in
2.1.

Reordering is implicitly constrained if instructions depend on each other. For
example, read -> read or read -> write data dependencies, this includes address
dependencies, are not reordered by x86 or any architecture supported by the Linux
kernel for that matter, except DEC Alpha. [5]

2.3.2 Weak Memory Consistency

Weaker MCMs, such as those of Arm or IBM Power architectures, take reordering a
step further, placing hardly any constraints on reordering of reads and writes. [12]
abstractly describe this as every thread having its own copy of memory. In contrast
to TSO, instructions can even be speculatively executed before previous conditions
have been fully resolved. This can become a problem as shown in 1. However, there
still exist mechanisms for implicitly imposing ordering on an architecture level. For
example, through data dependencies. [12]

7

2 Background

Figure 2.5: Abstractly visualising a strong MCM: TSO on a two-thread system

8

2 Background

2.3.3 Ambiguities in Memory Consistency

Even though architecture-level memory models are as close to the executed code as
feasibly possible, hardware vendors’ specifications still leave room for ambiguities. In
the case of TSO, this lead to the rigorous formalisation of x86-TSO in [16].

2.3.4 Mechanisms That Influence Reordering on the Architecture Level

In an ideal world, where loads and stores to memory happen instantaneously, no
reordering of instructions would be needed and sequentially consistent executions
would be the default. Since CPU speeds have increased exponentially faster than
memory access speeds over the last decades, vendors had to come up with increasingly
sophisticated mechanisms for reducing the rising costs, i.e. CPU cycles, of memory
accesses. Amongst others, the Armv8-A reference manual [17] describes the following:

• Multiple instructions can be issued by CPUs within the same cycle, allowing true
concurrency and potentially out-of-programme-order executions.

• As shown in 2.2, non-dependent instructions can be executed out of order to
ensure the best utilisation of computing power.

• Instructions can be speculatively executed before control flow has been fully
resolved.

• Loads and stores to memory can be batched together for reducing latency.

Only in multi-threaded programmes this can lead to unexpected behaviour. In
single-threaded programmes, an execution in programme order is guaranteed.

2.4 The LLVM Project

2.4.1 The Philosophy of LLVM

The name LLVM unifies several different projects under one umbrella. Most promi-
nently, LLVM includes the Clang compiler, but it also offers a linker, a debugger and
an implementation of the C++ standard library. In short, it provides a whole toolchain
of its own for going from source code to executable, which was specifically designed
with reusability in mind. Reusability in LLVM is achieved through high modularity. As
a result, real-world uses of LLVM are very broad and range from gaming consoles, to
operating systems and image processing [18]. The LLVM project of particular interest
for this thesis is the Clang compiler. [19]

9

2 Background

"/home/paul/src/DoitLK-llvm/build/bin/clang-13" "-cc1" "-triple" "x86_64-
↪→ unknown-linux-gnu" "-emit-obj" "-mrelax-all" "--mrelax-relocations"
↪→ "-disable-free" "-main-file-name" "helloworld.cpp" "-mrelocation-
↪→ model" "static" "-mframe-pointer=all" "-fmath-errno" "-fno-rounding
↪→ -math" "-mconstructor-aliases" "-munwind-tables" "-target-cpu" "x86
↪→ -64" "-tune-cpu" "generic" "-debugger-tuning=gdb" "-fcoverage-
↪→ compilation-dir=/home/paul/src/linux" "-resource-dir" "/home/paul/
↪→ src/DoitLK-llvm/build/lib/clang/13.0.0" "-internal-isystem" "/home/
↪→ paul/src/DoitLK-llvm/build/bin/../include/c++/v1" "-internal-
↪→ isystem" "/home/paul/src/DoitLK-llvm/build/lib/clang/13.0.0/include
↪→ " "-internal-isystem" "/usr/local/include" "-internal-externc-
↪→ isystem" "/nix/store/q141hd8jl7in5223jmf7kmx9h517km4p-glibc
↪→ -2.32-54-dev/include" "-fdeprecated-macro" "-fdebug-compilation-dir
↪→ =/home/paul/src/linux" "-ferror-limit" "19" "-fgnuc-version=4.2.1"
↪→ "-fcxx-exceptions" "-fexceptions" "-fcolor-diagnostics" "-faddrsig"
↪→ "-D__GCC_HAVE_DWARF2_CFI_ASM=1" "-o" "/run/user/1007/helloworld-0
↪→ c0a09.o" "-x" "c++" "helloworld.cpp"

[...]

Figure 2.6: A part of the Clang frontend command when compiling a simple hel-
loworld.cpp file

2.4.2 An Overview of Clang

Clang sticks to LLVM’s philosophy of modularity and can once again be dissected into
several subcomponents. When users interact with Clang on the command line, they
are invoking its driver component. The driver abstracts from the operation system,
providing a unified interface for running Clang on any supported system.

The ’-###’ driver option prints out the arguments which the driver eventually passes
to the frontend. For example, for a simple helloworld.cpp programme, ’clang++ hel-
loworld.cpp -o helloworld’ might expand to something to 2.6. The frontend only marks
the beginning of the several stages the source code takes until it ends up in an exe-
cutable. Clang can print out the different stages a programme goes through with the
’-ccc-print-phases’ option. We explain them briefly [20]:

Preprocessing As part of preprocessing the source code, macros are expanded, header
files included, comments removed and other preprocessor commands resolved
until eventually, a translation unit is generated.

10

2 Background

Parsing and Semantical Analysis The parsing stage transforms translation units into a
tokenised form. For example, a simple assignment such as ’x = 42’, is broken up
into its left-hand and right-hand sides. This stage can also generate many familiar
compiler warnings. For ’double foo = "bar"’, it might warn about type mismatch
and a missing semicolon for example. If no error is thrown, an abstract syntax
tree (AST) is generated, which marks the final step before generating the IR.

Code Generation and Optimization The AST is used for generating IR, which is then
optimised and translated into assembly code for the specified target - typically in
a ’.s’ file. This is the stage our work is concerned with.

Assembler The assembler takes the output from the previous stage and assembles it
into an object file.

Linker The final stage eventually links together all relevant object files into an exe-
cutable.

How much freedom Clang can take in its optimisations is determined by the ’-O’
flag passed to the driver. For example, ’-O0’ disables optimisations and ’-O2’ enables
most optimisations and is what we use to build the Linux kernel [21]. For optimising
code, Clang uses LLVM’s pass infrastructure. Passes may run on modules, functions
or loops for example and are categorised into transformation passes, which modify
the code, e.g. by optimising it, and analysis passes, which obtain information from the
code. Clang’s use of passes again underlines the modularity of LLVM. Not only can
the passes be language independent, but they are decoupled from the projects they are
used by. This means one can easily extend Clang using LLVM passes without specific
knowledge of Clang’s internals.

2.4.3 LLVM Intermediate Representation

LLVM IR is characterised by Single Static Assignment (SSA) form, guaranteeing that
each variable is assigned a value exactly once. Whilst it may look cumbersome, it makes
optimisations easier. Note that IR is, like C and C++, platform dependent. Differences
become apparent when using ’sizeof(long)’ for instance as its result depends on the
architecture [22].

On an IR level, it may appear that the value on the left-hand and right-hand side of
an assignment are different, i.e. we are assigning one value to another value. With SSA
properties however, this assignment can only happen once, meaning that every register
can be identified by its value - registers are their own value. In 2.7 for example, ’%0’
is ’%0 = load i32, i32* %tmp, align 4, !dbg !82’. The ’=’ is more akin to equality in the
mathematical sense.

11

2 Background

; Function Attrs: noinline nounwind null_pointer_is_valid optnone
↪→ sspstrong

define internal void @lkm_exit() #0 !dbg !76 {
entry:
%tmp = alloca i32, align 4
store i32 0, i32* %tmp, align 4, !dbg !79
%0 = load i32, i32* %tmp, align 4, !dbg !82
ret void, !dbg !83

}

Figure 2.7: A simple IR function

IR instructions are grouped into basic blocks which are linked together to form the
control flow graph of a function. One or several functions make up a module, i.e.
translation unit.

One mechanism for passing information through the optimisation pipeline is anno-
tating IR instructions with metadata. This is further discussed in 6.

2.5 Potentially Broken Dependency Orderings in the Linux
Kernel

Above, we have provided an overview of the different factors influencing compilation
of concurrent C programmes, i.e. the C memory model, compiler optimisations and
various architecture-level memory models of different strengths. The Linux kernel
makes an important change here, as it maintains a language-level memory model of its
own.

2.5.1 The Linux Kernel Memory Model

Since the Linux kernel community has been using atomics and memory orderings,
e.g. release-acquire, before they were introduced in the C standard, the community
had to come up with its own implementation atomics in C. Once atomics officially
became a part of the C language with C11, it would seem natural for the Linux kernel
to switch away from its custom implementation. In fact, this has been proposed on
the Linux Kernel Mailing List (LKML), but has been met with doubts. One concern
was the lack of a memory_order_consume implementation with current compilers [23],
which could have significant effects as the Linux kernel’s widely-used implementation
of rcu_dereference() depends on memory_order_consume semantics. [3] With the Linux

12

2 Background

int a[20];
int i;

r1 = READ_ONCE(i);
r2 = READ_ONCE(a[r1]);

Figure 2.8: An address dependency as per [5]

int x, y;

r1 = READ_ONCE(x);
if(r1)

WRITE_ONCE(y, 1984);

Figure 2.9: A control dependency as per [5]

kernel often facing problems that were outside of the capabilities of the C-standard,
the above being one example, the community decided early on to maintain a matching
memory consistency model for its atomics - the Linux Kernel Memory Consistency
Model (LKMM).

The LKMM is loosely defined in [5] and formally in [1], differing from the C memory
consistency model in subtle points [3]. It abstracts from C source code into events which
are represented as macros and resolved by the preprocessor. A memory access through
one of the macros is referred to as annotated. LKMM maintains three kinds of events
for accessing shared memory, each of which associates with different annotations [5]:

Read Events Read events correspond to loads from shared memory, such as calls to
READ_ONCE(), smp_load_acquire(), or rcu_dereference()

Write Events Write events correspond to stores to shared memory, such as calls to
WRITE_ONCE(), smp_store_release(), or atomic_set()

Fence Events Fence events correspond to memory barriers (also known as fences),
such as calls to smp_rmb() or rcu_read_lock()

Several relations link different events. For instance, address and control dependencies
are defined as follows with 2.8 and 2.9 being provided as examples [5]:

Address Dependency A read event and another memory access event are linked by an
address dependency if the value obtained by the read affects the location accessed
by the other event. The second event can be either a read or a write.

13

2 Background

Control Dependency A read event and another memory access event are linked by a
control dependency if the value obtained by the read affects whether the second
event is executed at all.

In the case of address dependencies, LKMM relies on the fact that they are ordered
by nearly all architectures. In order for code to arrive at the architecture however,
it has to go through the compilers’ optimisation pipelines which the Linux kernel
community fears could be a problem as the Linux kernel does not use the atomics and
memory orderings specified by the C standard, which compilers take into account. Most
prominently, the community is concerned about address and control dependencies
being affected as shown in 1. Most recent discussions were a result of a proposal for
Clang Link-Time Optimisation (LTO) support on arm64 [24]. As this issue is yet to
be explored in detail and the community is still unclear on whether this is a problem
worth addressing, the convenience of a tool was discussed which would be able to
detect such broken dependencies [7] [8] [4]. We propose such a tool as part of this
thesis.

2.5.2 Clang and the Linux Kernel

Whilst the standard approach would be to compile a Linux kernel with GCC, it does
support compilation with Clang out of the box [25]. In fact, there exist several Linux
kernel derivatives, such as Android, which can only be compiled with Clang. Since the
topic of broken dependencies has been discussed in the context of Clang-built kernels
and LLVM LTO support, due to the modular and extensible nature of LLVM, we choose
to implement the tool as an extension to the Clang compiler in the form of compiler
passes.

14

3 System Overview

In the following, we outline a means for identifying a subset of dependency orderings
in the Linux kernel, tracking them through compiler optimisations and providing a list
of broken dependencies to users. We implement the tool as an extension to the LLVM
Clang compiler in the form of compiler passes, where the broken dependencies are
printed as warnings to the stderr stream. This allows a natural integration in the build
process of the Linux kernel, as Clang is supported out of the box [25]. We provide two
passes. One for annotating the dependencies before compiler optimisations and one
for verifying the annotated dependencies after compiler optimisations. Both passes are
inserted into the Clang pipeline accordingly. Being an extension to LLVM, the compiler
passes annotate and verify dependencies on the level of LLVM intermediate representa-
tion (IR). We test the tool with a kernel module, containing cases of dependencies that
we deem relevant. Dependencies are artificially broken after they have been annotated
by the first pass and are then detected as such by the tool after compiler optimisations
have run when building a Linux kernel with modules enabled. Results are discussed in
6. Currently, our tool identifies read -> read and read -> write address dependencies
where both accesses are annotated as per LKMM. Further development is discussed in
9.

15

4 Design

4.1 Source-Level Dependency Orderings in LLVM IR

The proposed compiler passes annotate address dependencies. As per 2, address
dependencies begin with READ_ONCE() (R) or another annotation which eventually
expands to a R access and end with R, WRITE_ONCE() (W) or another annotation which
eventually expands to W. 4.1 and 4.2 shows how the READ_ONCE() and WRITE_ONCE()
macros are defined in linux/include/asm-generic/rwonce.h. We observe that R and W
eventually map to a volatile pointer. As annotation and verification happen on the
LLVM IR level, we require a unique representation of R and W in LLVM IR. Since he
LLVM Language Reference guarantees that volatile accesses carry down to IR [26], the
Linux kernel requires accesses to shared memory to be annotated and R and W expand
to a volatile pointer, we make the following assumption: all memory accesses marked
with volatile in LLVM IR are the result of a shared memory access in Linux kernel
source code and can therefore be part of a relevant dependency. We accept potential
false positives as a result of source code not adhering to the kernel standard. Therefore,
in IR, address dependencies are characterised by a first load instruction with attached
’volatile’ as well as a second load or store instruction with attached ’volatile’ which loads
from or stores to an address that depends on the first volatile load.

To track dependencies between values, we introduce the notion of a dependency

#define READ_ONCE(x) \
({ \

compiletime_assert_rwonce_type(x); \
__READ_ONCE(x); \

})

#define __READ_ONCE(x) \
(*(const volatile \
__unqual_scalar_typeof(x) *)&(x))

Figure 4.1: READ_ONCE() in the Linux kernel [27]

16

4 Design

#define WRITE_ONCE(x, val) \
do { \

compiletime_assert_rwonce_type(x); \
__WRITE_ONCE(x, val); \

} while (0)

#define __WRITE_ONCE(x, val) \
do { \

*(volatile typeof(x) *)&(x) = (val); \
} while (0)

Figure 4.2: WRITE_ONCE in the Linux kernel [27]

Dv = {v′ ∈ V | ∀v′ : reaches(v, v′) ∧ depends(v′, v)}
reaches(v, v′) ⇐⇒ control f low can reach v′ f rom v f or v, v′ ∈ V

depends(v′, v) ⇐⇒ v uses v′ ∨ ∃v′′ ∈ V : depends(v′, v′′)

Figure 4.3: Defining a dependency chain

chain as shown in 4.3. A dependency chain is started by a volatile load and contains all
the values that depend either directly or indirectly on the value of the volatile load. We
think of it as a chain which runs from the start to the end of a dependency, where the
links are the depending instructions. For a volatile load instruction with value v as part
of the set of all values V in the module, we define the dependency chain as a set Dv in
4.3. Per our definition, a dependency chain might contain several dependencies which
all start at the same load.

4.2 Algorithmic Approach

We propose an algorithm for annotating and verifying address dependencies in LLVM
IR based on the Breadth-First Search (BFS) outlined in [28]. For every function in a
module, the algorithm runs on the control flow graph (CFG) of the function’s basic
blocks (BBs) and annotates / verifies dependencies as it iterates over the instructions in
a BB. Furthermore, it carries out interprocedural analysis, meaning that it can annotate
/ verify dependencies across function boundaries. The proposed algorithm is one-pass
in the sense that it only looks at BBs as often as they appear in paths through the
CFG. This does not prohibit the algorithm from looking at the same BB multiple times.
For example, in the case of a function call, the algorithm looks at the function itself

17

4 Design

and then looks at it again when following the corresponding function call in another
function.

4.3 The Annotation Pass

The annotation pass is called for every IR module which is being compiled. This
happens before most of the optimisation passes run and is discussed further in 5.

The pass begins by iterating over every function in the module in arbitrary order,
skipping those that are empty. Once it finds a function that is not empty, it initialises
two empty maps, beginnings and endings, which hold the annotations to be made for
beginnings and endings respectively, as well as the function’s post-dominator tree
which is used for ruling out conditional paths in the CFG. Both beginnings and endings
map unique IDs to dependency beginnings / endings respectively. Their representation
is discussed in 5. The pass then starts the modified BFS on the function’s CFG. The BFS
maintains a context which contains all relevant data structures for annotation. Once
the search has returned, the pass proceeds with annotating the identified dependencies
and finishes by artificially breaking some of the dependencies if it is currently looking
at one of the functions in our testing module.

4.4 The Verification Pass

Like the annotation pass, the verification pass is called for every module being compiled,
only this time after most of the optimisations have run. Again, this is further discussed
in 5.

Before iterating over all the functions in the module, the verification pass initialises
an empty set, which holds the IDs of the dependencies that have already been verified,
as well as beginning and ending maps. Like the annotation pass, the verification pass
iterates over all functions in the module, skipping those that are empty. After running
a BFS on all non-empty functions, the pass finishes by printing all broken dependencies
if it was able to find any.

4.5 Breath-First Search for Annotation and Verification of
Dependencies

The BFS function has been abstracted enough to be used for annotation as well as
verification. it is called for non-empty function in a module and orchestrates the
traversal of the CFG. 1 shows a high-level version of the BFS in pseudo code.

18

4 Design

Algorithm 1 A modified BFS for identifying (broken) dependencies

1: procedure BFS(context)
2: b f s_queue← [(context.BB, context.potential_beginnings)]
3: visited_BBs← ∅
4: while b f s_queue ̸= [] do
5: update_context()
6: new_potential_beginnings← checkBBForDeps(context)
7: if context.inter_procedural_level > 0 then
8: handle_block_with_return_inst()
9: end if

10: for all s ∈ successors(context.BB) do
11: if s ∈ visited_BBs then
12: handle_duplicate_BB()
13: else
14: b f s_queue.push_back({s, new_potential_beginnings})
15: visited_BBs ∪ {s}
16: end if
17: end for
18: end while
19: end procedure

19

4 Design

Figure 4.4: A single ’if.then’ BB which must be looked at before the ’if.end’ BB in the BFS

The BFS initialises the following:

• A queue, containing all BBs which are yet to be looked together with a state of
all dependency chains from their immediate predecessors. It is initialised with
the entry block of the function and an empty map of instructions to potential
beginnings, including their dependency chains. In the following this map is
referred to as DepChainMap

• A set, containing all BBs that have already been visited

Once initialised, the BFS function iterates over the queue until it is empty. In the loop,
it pops the first element from the queue - a pair consisting of a BB and a DepChainMap
- and call the checkBBForDeps() function, passing it the current context. checkBBForDeps()
eventually returns the new DepChainMap which holds after control flow runs through
the current BB. The BFS now needs to check in which context it is being called. Callees
could be either the annotation pass, the verification pass or the checkCallForDeps()
function, which is responsible for interprocedural analysis. In the latter case, the BFS
needs to check whether the BB it just looked at is terminated with a return instruction.
If yes, it needs to adjust the return set in the current context accordingly. This is
touched on again in the following subsections. In short, the pass checks if the return
value of a function is part of any dependency chain. The loop is completed by adding
new elements, i.e. successors of the current BB, to the queue, taking into account the

20

4 Design

possibility of duplicates. Succeeding BBs are partitioned according to post dominance.
Every succeeding BB which does not post dominate the current BB is looked at before
every succeeding BB which does post dominate the current BB. This is needed to
maintain the breath-first nature of the search as illustrated by 4.4. If the BFS were
to look at the ’if.end’ BB before ’if.then’ BB, the BFS function would not respect its
breath-first requirement. If a succeeding BB is not present in the queue, we can simply
add it to the queue together with the current DepChainMap. However, multiple BBs
might have the same successor. Therefore, if the BB is already present in the queue, we
need to update the BB’s DepChainMap accordingly. We do this by intersecting the two
dependency chains. Only values which are present in both dependency chains are be
preserved. A requirement which is be further discussed in 6. If a succeeding BB has
been visited before, it is skipped as this implies a cycle.

4.6 Building the Dependency Chains

The checkBBForDeps() function, which is called by the BFS, is responsible for tracking
the dependency chains. It iterates over all instructions in the current BB, handling
the different instruction types accordingly and adding their values to the correct
dependency chains.

4.6.1 Handling Volatile Loads and Stores

Every time a volatile load or store instruction is encountered, a dependency can
potentially be annotated or verified. In the case where the ending of a dependency is
encountered, checkBBForDeps() checks for post-domination, i.e. if the BB of the second
memory access post-dominates the BB of the first memory access. A basic block BB2
is said to post-dominate a basic block BB1 if every path from BB1 to the end of the
function must go through BB2 [29]. This guarantees that the second load is not optional
when control flow goes from the first load to the end of the function. It is one step in
ruling out control dependencies from being falsely annotated as address dependencies
and is further discussed in 6. The check for post-dominance accounts for the two
memory access occurring in different functions.

4.6.2 Interprocedural Analysis

Every time checkBBForDeps() encounters a call, it differentiates between the following
cases:

Case 1: Do dependencies start in the called function and end in the called function?

21

4 Design

Case 2: Do dependencies start in the called function and end in the calling function?

Case 3: Do dependencies which begin in the calling function end in the called function?

Case 4: Do dependencies which begin in the calling function run through the called
function and end in the calling function?

The depth of interprocedural analysis is statically limited by a constant defined in
source code. Therefore, checkCallForDeps() immediately checks the current depth after
being called. Only if it is under the limit, it starts a new BFS in the called function.
For covering cases 3 and 4, checkCallForDeps() (and therefore the BFS) receive the
dependency chains, which contain the functions arguments, as part of the context.
Cases 1 and 2 are handled as they would be without interprocedural analysis. The
BFS carries on as described above. When encountering a BB which is terminated with
a return instruction however, some additional actions are required. Since the BFS is
carrying out interprocedural analysis and it has encountered a return value, to cover
cases 2 and 4, it has to check whether the return value is part of any dependency chain.
All dependency chains for which this is the case are added to a set, which is later
returned to the calling function. Once the BFS has finished and checkCallForDeps() has
returned the set of all instructions whose dependency chains either begin in or run
through the called function, it initialises new dependency chains with the call’s value
or add the call’s value to existing dependency chains respectively.

22

5 Implementation

5.1 Infrastructure

The passes for annotation and verification of address dependencies are implemented in
a single source file as part of the LLVM source tree.

5.2 Data Types

We introduce several custom data types for annotation and verification of dependencies.

5.2.1 Potential_Dependency_Half Objects

For representing potential beginnings of dependencies, we introduce a Potential_Dependency_Half
structure. Most importantly, it contains the current dependency chain for a given in-
struction and amongst others also a call_stack, implemented as a vector, for handling
handling post dominance in interprocedural analysis correctly. Instructions map to
Potential_Dependency_Half objects in DepChainMaps.

5.2.2 Dependency_Half Objects

As mentioned in 4, both passes maintain a map for beginnings and endings, each
associating unique IDs with dependency beginnings / endings respectively. In source
code, beginnings and endings are represented as Dependency_Half objects which store all
required information for either making an annotation or printing a broken dependency,
depending on the context. IDs are strings constructed from the address of the beginning
instruction and the address of the ending instruction.

5.2.3 BFS_Context Objects

Furthermore, the BFS function, checkBBForDeps() and checkCallForDeps() all handle
BFS_Context structures, storing what needs to be accessed or modified when traversing
the CFG. Most notably, this includes the DepChainMap, a flag for checking whether

23

5 Implementation

the BFS is meant to annotate or verify, pointers to the beginning and ending maps and
the current depth of recursion for interprocedural analysis.

5.3 The InstVisitor Pattern

As it is common for LLVM passes to iterate over a list of instructions and then take
different actions based on the individual instruction kind, LLVM offers the InstVisitor
design pattern. Note that Aside from convenience and readability, it does not provide
any notable performance improvements over having a switch statement on an instruc-
tion’s type [30]. Our BFS_Context structure inherits from LLVM’s InstVisitor class and
implements visitor functions for the following cases:

• The general Instruction case

• The LoadInst case

• The CallInst case

• The ReturnInst case

• The StoreInst case

This allows checkBBForDeps() to be implemented in 2 lines, as LLVM also provides a
function for automatically visiting all instructions in a BB.

5.3.1 The General Instruction Case

For every dependency chain, the function checks whether any of the instruction’s
operand values are part of the dependency chain. If yes, the values of the instructions
are added to the dependency chain.

5.3.2 The LoadInst and StoreInst Cases

The LoadInst and StoreInst cases are the most critical of all, as they mark ending, or
in the case of a load also the beginning, of a dependency. Since loads and stores are
handled similarly, both visitor functions forward to the handle_load_store() function.

5.3.3 The handle_load_store() Function

handle_load_store() first checks whether the memory access is marked ’volatile’. If this is
not the case, the pass simply checks if the memory access belongs to any dependency
chain. For both, loads and stores, it checks whether the first operand, the source, is

24

5 Implementation

part of any existing dependency chain, and if this is the case, add the current memory
access’s value to said dependency chain. If the access is marked ’volatile’, the visitor
function switches between the cases of annotating and verifying.

Annotation Case

When annotating, the visitor function checks if the memory access is part of any depen-
dency chain. For doing so, in the case of a load, it looks at its first and only operand,
and in the case of a store, it looks at its second operand, the destination. Should the
access be part of a dependency chain, handle_load_store() calls addMetadataToPair(). After
checking existing dependency chains, in the case of a load, handle_load_store() also
creates a new dependency chain as the volatile load marks the potential beginning of a
new dependency.

Verification Case

When verifying, handle_load_store() hands off verification to handle_annotation() if !anno-
tation type metadata is present.

5.3.4 The CallInst Case

After checking that the called function is not empty and that it is not variadic - this
case is omitted - the CallInst visitor function builds a new context for the BFS to be
started in the called function. One important difference is that the BFS in the called
function does not receive the full dependency chains, but dependency chains which
have been initialised with the relevant function argument. The dependency chains are
only added if will_always_reach(BB1, BB2) evaluates to true, where BB1 is the BB of the
instruction marking the potential beginning and BB2 is the current BB. Again, this is to
rule control dependencies from being falsely identified as address dependencies and is
further discussed in 6. The CallInst visitor function then calls checkCallForDeps(), and
once it has received the return set, handles the dependencies which run through the
called function or start in the called function. It is also here where the call is added to
the call stack vector of the Potential_Dependency_Beginning.

5.3.5 The ReturnInst Case

If it is not called as part of interprocedural analysis or the return value is void, the
ReturnInst visitor function immediately returns. Otherwise, the ReturnInst visitor
function erases all dependency chains of instructions where the return value is not a
part of their dependency chain.

25

5 Implementation

”Doitlk : type, f unction name, line, call stack, id; ”

Figure 5.1: The metadata strings our passes use for annotating and verifying dependen-
cies in IR

5.3.6 Explicitly Skipped Cases

Since not all instructions are relevant for tracking dependency chains, e.g. because they
do not ’return’ a value, several instructions types are explicitly skipped by implementing
an empty visitor function. These instruction types are:

• AllocaInst

• CmpInst

• FenceInst

• AtomicCmpXchgInst

• AtomicRMWInst

• FuncletPadInst

5.4 Annotation With and Verification of Metadata

During optimisations, IR code can be heavily modified. For being able to track ’inter-
esting’ instructions through the optimisation pipelines nevertheless, LLVM provides
metadata, which can be attached to instructions or functions for example. Out of the
box, LLVM provides the !annotation metadata type, allowing users to attach strings to
instructions, which are guaranteed to be preserved through optimisations. Therefore,
we are guaranteed to find all !annotation type metadata annotations again after optimi-
sations if their corresponding instructions were not optimised away. !annotation type
metadata was designed with the specific purpose of annotating ’interesting’ instruc-
tions and therefore ideally suit our purpose [31]. We will see in 6 that !annotation type
metadata is lost despite the guarantee of being preserved.

5.4.1 Representing Dependency Annotations as Strings

Since !annotation type metadata only supports strings, we define a string representation
of the Dependency_Half objects as follows:

26

5 Implementation

’DoitLK: ’ specifies whether this is an annotation related to dependency orderings. It
helps to differentiate our dependency annotations from other annotations LLVM
might make.

’type’ specifies whether this is a beginning or ending annotation.

’function name’ is the name of the source code function the instruction belongs to.

’line’ denotes the corresponding line number in source code. It is obtained through
the DebugLoc object which can be attached to an instruction. If options rule out
DebugLoc, the line number is set to -1.

’call stack’ shows the call stack of functions through which the pass arrived at the
instruction.

’ID’ is used to uniquely identify a dependency pair.

!annotation type metadata is represented through a MDNode object in source code. An
MDNode object may have several MDOperand objects attached which in the case of
!annotation represent the different strings that were annotated to the instruction.

5.4.2 The addMetadataToPair() and add_annotations() Functions

There are two functions which deal with !annotation type metadata when running the
annotation pass. addMetadataToPair() gets called every time the BFS identifies an address
dependency in the handle_load_store() function. It simply adds the Dependency_Half
objects to the beginnings and endings maps. add_annotations gets called once the BFS has
finished and adds the right strings as !annotation type metadata to the instructions for
every Dependency_Half object in beginnings and endings.

5.4.3 Verifying Dependency Annotations With handle_annotations()

handle_annotations() gets called every time the verification pass’s BFS encounters !anno-
tation type metadata in the handle_load_store() function. It looks at all MDOperand nodes
attached to the !annotation, skipping those which do not contain the ’DoitLK’ identifier,
and parses their string data through a helper function. If the ID of the dependency
has been verified before, the current operand is skipped. This can happen when the
same dependency is inlined in different contexts. In that case, it is encountered several
times in the optimised IR although it originally only existed once. The IDs ensure
that every annotation pair maps to exactly one dependency in the unoptimised IR
and is only verified once. If the ID has not been verified before, handle_annotations()
checks the annotation type. If it is a beginning, the Dependency_Half is inserted into

27

5 Implementation

the beginnings map and the dependency chain for the instruction is created for it to
be tracked by the BFS. If it is an ending, handle_annotations attempts to verify the
dependency by checking if the memory access is part of the correct dependency chain.
handle_annotations continues with the next operand, leaving the broken dependency to
be printed out at the end, if one of the following is true:

• A dependency chain with a matching ID does not exist.

• The correct dependency chain exists, but the current access does not depend on
any value in it.

• The correct dependency chain exists, but the second access is not always reached
by the first access, i.e. it is conditional.

If handle_annotations is able to verify the dependency however, all entries with the
corresponding ID in beginnings and endings are deleted and the ID of the dependency
is added to the set of verified IDs.

5.5 Breaking Dependencies for Testing - The insertBug()
Function

The insertBug() function gets called conditionally at the end of a BFS in the annotation
pass if the function’s name corresponds to one of those in the testing module, i.e. its
name contains the string ’doitlk’. insertBug() artificially breaks either the beginning or
the ending of the dependency chain in a given function. For both cases, the function
iterates over the BBs in the function in arbitrary order and then over the instructions in
each BB in order, looking for an instruction that contains a !annotation type metadata
with the correct type annotation, i.e. beginning or ending. If it is able to find such
an instruction, it attempts to break the beginning or ending of the corresponding
dependency chain. In the case of it breaking a beginning, it inserts a bug value virtual
register - bugVal in short - and initialise it with ’42’. Starting at the beginning of a
dependency, it continues looking for the first store instruction which uses the value
obtained by the dependency’s beginning and replace its first operand, i.e. the source,
with the bugVal register, thereby breaking the dependency chain. Both, beginning and
ending annotations, remain. In the case of it breaking the end annotation, again a
bugVal is inserted and the source of the second load or store instruction is set to bugVal,
thereby breaking the dependency chain, but once again preserving the annotations.

28

5 Implementation

5.6 Determining Reachability

Every time the the BFS requires a check for post domination, it calls the will_always_reach()
function, which accepts two instruction pointers and the call stack pointer for the first
instruction as arguments. Unlike the built-in dominates() function for post-dominator
trees in LLVM, will_always_reach() is able to handle instructions in different functions
through the call stack it receives as a function argument. will_always_reach() returns true
if every path leading to the end of the second instruction’s function, starting from the
first instruction or the call leading to the first instruction, reaches the second instruction.

5.7 Printing Broken Dependencies

print_broken_deps() finally prints all the dependencies which remain as potentially bro-
ken dependencies to the user. 5.2 shows how the function outputs a broken dependency
to users. Due to the way LLVM handles printing of metadata, the !annotation metadata
number in the instruction print does not match the !annotation metadata print below.
We are not aware of a way of circumventing the mismatch as of now. Furthermore,
the arrow at the end of ’via foo::50->’ is due to our current implementation and will be
addressed in future version of our passes.

5.8 Clang Integration

In order for the passes to be run as part of the different Clang pipelines, they are
injected using LLVM’s callback interface [32]. The annotation pass is injected via
the registerPipelineStartEPCallback() function and the verification pass is injected via
registerOptimizerLastEPCallback(). If the Clang driver is invoked with the ’-O0’ option,
the annotation pass is inserted via registerOptimizerLastEPCallback() and verification is
skipped.

5.9 Running the Passes

Since the passes were directly inserted into the Clang optimisation pipeline, there is
no difference between running a regular Clang build and our custom Clang build. We
dive into more detail on building the Linux kernel with Clang in 6.

29

5 Implementation

Address dependency with ID "0xc0768c00xc52d7e0" couldn’t be verified. It
↪→ might have been broken.

...First access in optimised IR
in function foo: %1 = load volatile i64, i64* %state, align 8, !

↪→ annotation !12
!152 = !{!"DoitLK: address dep begin,foo,42,,0xc0768c00xc52d7e0;"}

Inst was originally found in function foo in line (source code) 42

<print IR of optimised foo function if available>

...Second access in optimised IR in function bar: %14 = load volatile i64,
↪→ i64* %state.i, align 8, !annotation !16

!35 = !{!"DoitLK: address dep end,bar,21,foo::50-> ,0xc0768c00xc52d7e0;"}
Inst was originally found in function bar in line (source code) 21
via foo::50->

<print IR of optimised bar function if available>

Figure 5.2: Printing a broken address dependency

30

6 Evaluation

With the uncertainty of dependency orderings being broken, there is a chance of our
tool functioning correctly, yet it finding no instances of broken dependencies in the
kernel. For testing our implementation, we construct relevant dependencies in a Linux
kernel module which are either artificially broken or explicitly not detected by our
implementation, e.g. because they are control dependencies. We base our test cases on
[33] and [34] which discuss memory_order_consume dependency chains in C.

6.1 Experimental Setup

Since we have implemented annotation and verification of dependencies as well as the
insertion of artificially broken dependencies as LLVM compiler passes, which have
directly been integrated into Clang, there are no additional changes required to build
a Linux kernel with our passes enabled. We maintain an LLVM source tree which
includes our passes, as well as a Linux kernel source tree, where the kernel module
with the relevant test cases has been added in a new lib/modules directory and integrated
into the KBUILD build system. Our upper bounds for interprocedural analysis are
set to ’3’ for annotation and ’4’ for verification. We only build for arm64 as it is a
weakly-ordered architecture and therefore relevant for broken dependency orderings.
If all dependencies are present, the commands in 6.1 build a Linux kernel for arm64
based on allyesconfig. Our testing was done with the most recent version of the Linux
kernel - at the time of writing v5.15 rc7 - and LLVM 13. We build the Linux kernel
with a slightly modified version of allyesconfig where sanitisers have been disabled to
improve readability of IR code. In the following, we refer to it as doitlkconfig. We run
our builds with NixOS version ’21.05.20211022.1762637’ on an AMD EPYC 7713P x86
CPU with 512GB of RAM.

6.2 Overheads

We identify the overhead the passes introduce by comparing doitlkconfig Linux kernel
builds with and without our passes enabled. We use the command shown in 6.2.
Results are shown in 6.3. The passes introduce an overhead of roughly 10 seconds. This

31

6 Evaluation

make allyesconfig

make CC=<path_to_LLVM>/build/bin/clang ARCH=arm64 CROSS_COMPILE=
↪→ aarch64-unknown-linux-gnu- modules_prepare

make CC=<path_to_LLVM>/build/bin/clang ARCH=arm64 CROSS_COMPILE=
↪→ aarch64-unknown-linux-gnu-

Figure 6.1: Commands for compiling a Linux kernel with our passes enabled

time (make -s CC=<path_to_LLVM>/build/bin/clang ARCH=arm64 CROSS_COMPILE=
↪→ aarch64-unknown-linux-gnu- -j128 -s)

Figure 6.2: Command for timing a Linux kernel build

does not even make up one percent of the build time without passes enabled, and we
therefore deem it appropriate.

6.3 Current Restrictions

Generally, we favour false negatives over false positives for building trust in the tool. As
a result of not being able to handle control dependencies yet, we require dependency
chains to be strictly unconditional, which is tested by the AD7 case. This means that
no part of a dependency chain can be control-flow dependent or if it is, then it must
appear in all branches control flow might take. Furthermore, we rule out functions
with variadic argument lists and function pointers. Also, we only detect address
dependencies where both accesses are marked as per LKMM.

Output
With passes enabled 43043.29s user 2747.37s system

9642% cpu 7:54.90 total
With passes disabled 42483.07s user 2758.21s system

9726% cpu 7:45.12 total

Figure 6.3: A comparison of build times when building the Linux kernel with doitlkconfig
and our passes either enabled or disabled

32

6 Evaluation

6.4 Testing Our Implementation

We define the following dependencies as test cases, where each dependency gives way
for two test cases, breaking the beginning and breaking the ending of the dependency.
If not specified otherwise, each test cases is implemented as a read -> read as well
as a read -> write address dependency. Control dependencies are generally only
implemented for the read -> write case since LKMM does not guarantee ordering for
read -> read control dependencies [5]. We abbreviate address dependencies with AD
and control dependencies with CD and simplify function names. When possible, we
stick to the naming scheme of [33]

6.4.1 Address Dependencies

AD1: Simple Case

This is the trivial test case. The dependency begins and ends in the same function.

AD2: In via Function Parameter

Our second dependency starts in function A, then runs into function B through a
dependent argument in a function call and ends in function B.

AD3: Out via Function Return

AD3 sees function A calling function B with no arguments. An address dependency
then begins in function B, where function B’s return value is part of the dependency
chain. The dependency then ends in function A after being returned from function B.

AD4: In and Out, Same Chain

The dependency begins in function, runs through into function B through a function
call, gets returned and finally ends in function A.

AD5: Simple Case - End in If Condition

AD5 matches AD1 apart from the dependency ending in an if condition here. This case
only applies to read -> read dependencies as WRITE_ONCE() cannot be converted to a
Boolean value and can therefore not be used in an if condition.

33

6 Evaluation

AD6: Simple Case - Chain Through If-Else

AD6 tests the case where a part of the dependency chain is conditional, but it appears in
all the branches control flow could take, allowing our passes to consider it nevertheless.

AD7: Simple Case - Chain Through If

AD7 marks a case which is explicitly ruled out. A part of the dependency chain is
conditional and therefore not considered by our passes. This case marks a control
dependency as well as an address dependency. When the if-condition evaluates to true,
the address dependency gets enabled. However, for now, this case is not annotated by
our passes.

AD8: Simple Case - Fanning Out

AD8 tests two address dependencies with the same beginning, within the same function,
but different endings.

AD9: Fanning Out

AD9 contains two dependencies with the same beginning. The dependencies start at
the same load in function A and carry on with the same dependency chain until they
fan out into functions B and C where both dependencies end.

AD10: In and Out, but Different Chains

AD10 can be either understood as a unification of AD2 and AD3 or a variation of AD4.
An address dependency starts in function A and ends in function B, whilst another
dependency starts in function B and ends in function A.

Isolated __ktime_get_fast_ns() Case

We have isolated the address dependency from kernel/time/timekeeping.c::__ktime_get_fast_ns()
which was discussed in [4]. We edit the code such that the second load is also annotated
as shown in 6.4 since our passes do not yet cover the case where the second load is not
annotated. We do not break this dependency for testing and since it was taken from
Linux kernel source code, we only consider the read -> read case.

34

6 Evaluation

seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(READ_ONCE(tkr->base));

Figure 6.4: A modified version of the address dependency discussed in [4]

6.4.2 Control Dependencies

We add several control dependency test cases which are not annotated by the passes.
All CD test cases occur within the same function.

CD1: Simple Case - If Condition Not Part of Dependency Chain

This marks a trivial control dependency within the same function where the if condition
is not part of the dependency chain.

CD2: Simple Case - If Condition Part of Dependency Chain

CD2 is identical to CD1 except that this time the if condition is part of the dependency
chain.

CD3: Simple Case - If Branch Cannot Be Reached

CD3 is again identical to CD1, but the if condition is such that it always evaluates to
false.

CD4: Simple Case - Beginning in If Condition

The CD4 dependency begins in the if condition - an assignment is implicitly converted
to a Boolean value - and ends in the if branch.

CD5: Simple Case - Ending in For Loop

Since for loops are executed conditionally as well, we consider them as control de-
pendencies. CD5 differs from CD1 in the sense that it has a for loop instead of an if
condition.

35

6 Evaluation

6.5 Findings

6.5.1 Annotated Versus Verified Dependencies

Excluding test cases and broken dependencies, with doitlkconfig, our passes annotate
1197 and verify 331 address dependencies. We attribute the discrepancy between
the two numbers to the passes only verifying a given ID once although it may have
been annotated multiple times with different call stacks. Also, dependencies might be
optimised away.

6.5.2 Dependencies Flagged as Potentially Broken

Lost Annotations

Our passes flag two cases in drivers/md.c::state_show() and net/core/dev.c::napi_enable(),
both ending in test_bit(), as broken where the dependency in fact got preserved, but the
!annotation type metadata got lost. This, by design, should not happen, and we plan to
investigate this further by reaching out to the appropriate mailing lists.

Finding a Dependency Which Is Syntactic, but Not Semantic

We found a potentially broken address dependency in fs/afs/addr_list.c::afs_iterate_addresses(),
lines 375 - 377. 6.5 shows the relevant dependency which we took to the Linux ker-
nel mailing list [35]. As it turns out, it is expected that the compiler can break this
dependency as it is only syntactic, not semantic. It is syntactic in the sense that there is
an array subscript operator in addr[BIT_WORD(nr), computing an address by using a
value which traces back to a READ_ONCE(). However, it is not semantic as the index
which is being computed inside the array subscript operator must always evaluate to
zero, as addr points to an unsigned long. As a result of the discussion on LKML, we will
submit a pull request for the LKMM documentation, explicitly outlining the ambiguity
in syntactic and semantic address dependencies.

6.6 Implementation Improvements

With the eventual goal of upstreaming the tool once it is reliably able to identify
address and control dependencies, there are several implementation improvements that
we want to make. Primarily this concerns a tighter integration with existing LLVM
code, e.g. by leveraging existing passes if possible or LLVM-specific data types such
as the SmallVector<> or SmallString<> templates. Specifically, we want to explore an
integration with the MemoryDependenceAnalysisPass [36] and determine whether def-use

36

6 Evaluation

[...]
index = READ_ONCE(ac->alist->preferred);
if (test_bit(index, &set))

goto selected;
[...]

arch_test_bit(unsigned int nr, const volatile unsigned long *addr)
{

return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}

Figure 6.5: An address dependency which is purely syntactic (and not semantic) in
fs/afs/addr_list.c

/ use-def chains would be suitable for tracking dependency chains. We hat initially
investigated def-use / use-def chains, but abandoned the approach as a result of heavy
changes in our implementation. Finally, we would like to iron out small issues with the
printing of broken dependencies, e.g. make metadata numbers match and remove the
redundant arrow at the end of call stacks as mentioned in 5.

37

7 Related Work

7.1 Addressing Consume Semantics on the Language Level

On a C language level, there exist several approaches for enabling compilers to track
memory_order_consume dependencies [37] [38]. Consume semantics are directly related
to our problem as they are concerned with tracking the same kinds of dependency
chains. Whether these approaches are of use to the Linux kernel we will only be able
to tell once a definitive version make is into the C standard.

7.2 Linux Kernel-Specific Approaches

On a Linux-kernel level, there have been proposals for marking control dependencies
in code, specifying the programmers intent, thereby allowing compilers to preserve
the dependencies. Such approaches have been met with criticism, most notably by
Linus Torvalds, as the significance of the problem is still uncertain and it yet has to
be empirically shown that such annotation are indeed required, which we attempt to
address with our work [39] [40]. We are not aware of any approaches using compiler
passes for identifying potentially broken dependency orderings in the Linux kernel.

7.3 Rust in the Linux Kernel

As of April 21, using Rust in the Linux kernel is being heavily discussed [41]. At the
moment, Rust uses the C11 memory model and the jury is still out as to how Rust will
work with LKMM. [42]

7.4 XNU-Darwin Kernel

The XNU-darwin kernel, which is used for Apple’s macOS and iOS operating sys-
tems, discourages the use of memory_order_consume in its documentation and instead
proposes the use of its custom dependency memory order. Like Linux, XNU relies
on its own implementation of atomics and to compensate for the current state of
memory_order_consume, it has implemented the dependency memory order. However, it

38

7 Related Work

caveats its use by pointing out that compilers might still be able to break such depen-
dencies if they are able to infer certain properties about the pointers being used, e.g.
deduce that they can only be from a set of a few constants for example [43]. This seems
to point to the discrepancy between syntactic and semantic address dependency which
we discussed in 6. It appears that XNU’s implementation of the dependency order relies
on inline assembly, making it resistant against harmful compiler optimisations [44]. Yet,
it sparks our interest and we would like to look into it further, hoping that it would
mark a step in generalising our tool.

39

8 Future Work

The immediate next step we want to take with the project is expanding our tool
such that it is able to check for broken control dependencies. We believe that with
the existing algorithm and checks for post-domination in place, achieving control
dependency support is not far off. Furthermore, we would like to have our passes run
with LTO, and we want to expand our search for broken dependencies by looking at
other weakly-ordered architectures and more flavours of the Linux kernel, e.g. Android,
which is built with Clang by default and often with LTO enabled [45], too. When
exploring other flavours of Linux, we would use the opportunity to further investigate
how and if our problem relates to the XNU kernel. We would like to eliminate the
two false positives we are currently seeing and want to reach out to the appropriate
mailing lists to identify why the annotations are being lost. We aim to extend our
implementation such that it can run in strict and relaxed identification modes, where
the latter would not require the second memory access to be marked ’volatile’, i.e. it
does not pose a data race. This would significantly increase the amount of tracked
dependencies, but also the risk of false positives. Once we have an implementation
which is reliably able to identify broken address and control dependencies, we want to
look at upstreaming the passes into either the Linux kernel or LLVM source trees. One
step which must need to be taken before is to tighten the integration of our existing
implementation with LLVM, be it through the use of LLVM-specific data types or by
building on existing compiler passes as discussed in 6. And finally, we want to get
our work published - together with concrete instances of relevant dependencies being
broken we hope.

40

9 Conclusion

Whilst we were not yet able to find the ’holy grail’ of a truly broken dependency
ordering in the Linux kernel, we believe that we have built a solid foundation for reliably
identifying broken address and control dependencies. We were able to implement an
efficient solution for tracking a subset of address dependencies which integrates with
the Clang compiler and is able to run as part of the Linux kernel build process. We
were already able to contribute to LKML, be it an edge case, and are in the process of
submitting a pull request for the LKMM documentation. We have identified immediate
TODOs in 8, and since we now have the relevant infrastructure ready, we aim for
significant progress in the coming months.

41

List of Figures

1.1 A simple address dependency from y to x [4] 1
1.2 A transformation of 1.1 into the above control dependency would break

the desired instruction ordering [4] . 2
1.3 A control dependency with a constant conditional branch, giving way to

optimisations which could remove conditional branching [6] 2

2.1 An abstract example where reordering can become a problem 4
2.2 A modified version of 2.1 where a sequentially consistent execution

would not be required . 5
2.3 The ’is succeeded by’ relation . 5
2.4 C11’s memory orders [13] . 6
2.5 Abstractly visualising a strong MCM: TSO on a two-thread system . . . 8
2.6 A part of the Clang frontend command when compiling a simple hel-

loworld.cpp file . 10
2.7 A simple IR function . 12
2.8 An address dependency as per [5] . 13
2.9 A control dependency as per [5] . 13

4.1 READ_ONCE() in the Linux kernel [27] 16
4.2 WRITE_ONCE in the Linux kernel [27] 17
4.3 Defining a dependency chain . 17
4.4 A single ’if.then’ BB which must be looked at before the ’if.end’ BB in the

BFS . 20

5.1 The metadata strings our passes use for annotating and verifying depen-
dencies in IR . 26

5.2 Printing a broken address dependency 30

6.1 Commands for compiling a Linux kernel with our passes enabled . . . 32
6.2 Command for timing a Linux kernel build 32
6.3 A comparison of build times when building the Linux kernel with

doitlkconfig and our passes either enabled or disabled 32
6.4 A modified version of the address dependency discussed in [4] 35

42

List of Figures

6.5 An address dependency which is purely syntactic (and not semantic) in
fs/afs/addr_list.c . 37

43

List of Algorithms

1 A modified BFS for identifying (broken) dependencies 19

44

Bibliography

[1] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern, “Frightening
Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel,”
in Proceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, New York, NY, USA: Association for
Computing Machinery, Mar. 2018, pp. 405–418, isbn: 978-1-4503-4911-6. [Online].
Available: https://doi.org/10.1145/3173162.3177156 (visited on 11/13/2021).

[2] L. Torvalds, Re: [RFC] LKMM: Add volatile_if(), Sep. 2021. [Online]. Available:
https://lore.kernel.org/lkml/CAHk-=wgJZVjdZYO7iNb0hFz-iynrEBcxNcT8_
u317J0-nzv59w@mail.gmail.com/ (visited on 08/15/2021).

[3] P. E. McKenney, U. Weigand, A. Parri, and B. Feng, Linux-Kernel Memory Model,
Sep. 2017. [Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2017/p0124r4.html (visited on 08/15/2021).

[4] W. Deacon, Dependency Ordering in the Linux Kernel, 2020. [Online]. Available:
https://linuxplumbersconf.org/event/7/contributions/821/attachments/
598/1075/LPC_2020_--_Dependency_ordering.pdf.

[5] D. Howells, P. E. McKenney, W. Deacon, and P. Zijlstra, Linux Kernel Memory
barriers. [Online]. Available: https://www.kernel.org/doc/Documentation/
memory-barriers.txt (visited on 04/20/2021).

[6] W. Deacon, The Never-Ending Saga Of... Control Dependencies, 2021. [Online].
Available: https://linuxplumbersconf.org/event/11/contributions/973/
attachments/810/1587/Control%20deps%20-%20LPC%202021.pdf.

[7] N. Desaulniers, Re: [PATCH v2 18/18] arm64: Select ARCH_SUPPORTS_LTO_CLANG.
[Online]. Available: https://lore.kernel.org/linux-arm-kernel/CAKwvOdkDz1yRo=
Skt_mWxs0uucK+adXx8kFQksMbTE3ofnpUMQ@mail.gmail.com/ (visited on 09/23/2021).

[8] W. Deacon, Re: [PATCH 00/22] add support for Clang LTO. [Online]. Available:
https://lore.kernel.org/linux- arch/20200701100358.GA14959@willie-
the-truck/ (visited on 09/23/2021).

[9] M. Elver, D103958 [WIP] Support MustControl conditional control attribute. [Online].
Available: https://reviews.llvm.org/D103958 (visited on 09/26/2021).

45

https://doi.org/10.1145/3173162.3177156
https://lore.kernel.org/lkml/CAHk-=wgJZVjdZYO7iNb0hFz-iynrEBcxNcT8_u317J0-nzv59w@mail.gmail.com/
https://lore.kernel.org/lkml/CAHk-=wgJZVjdZYO7iNb0hFz-iynrEBcxNcT8_u317J0-nzv59w@mail.gmail.com/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0124r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0124r4.html
https://linuxplumbersconf.org/event/7/contributions/821/attachments/598/1075/LPC_2020_--_Dependency_ordering.pdf
https://linuxplumbersconf.org/event/7/contributions/821/attachments/598/1075/LPC_2020_--_Dependency_ordering.pdf
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://linuxplumbersconf.org/event/11/contributions/973/attachments/810/1587/Control%20deps%20-%20LPC%202021.pdf
https://linuxplumbersconf.org/event/11/contributions/973/attachments/810/1587/Control%20deps%20-%20LPC%202021.pdf
https://lore.kernel.org/linux-arm-kernel/CAKwvOdkDz1yRo=Skt_mWxs0uucK+adXx8kFQksMbTE3ofnpUMQ@mail.gmail.com/
https://lore.kernel.org/linux-arm-kernel/CAKwvOdkDz1yRo=Skt_mWxs0uucK+adXx8kFQksMbTE3ofnpUMQ@mail.gmail.com/
https://lore.kernel.org/linux-arch/20200701100358.GA14959@willie-the-truck/
https://lore.kernel.org/linux-arch/20200701100358.GA14959@willie-the-truck/
https://reviews.llvm.org/D103958

Bibliography

[10] S. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996, issn: 1558-0814. doi: 10.1109/2.
546611.

[11] L. Lamport, “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs,” IEEE Transactions on Computers, vol. C-28, no. 9, pp. 690–
691, Sep. 1979, issn: 1557-9956. doi: 10.1109/TC.1979.1675439.

[12] L. Maranget, S. Sarkar, and P. Sewell, “A Tutorial Introduction to the ARM and
POWER Relaxed Memory Models,” [Online]. Available: https://www.cl.cam.
ac.uk/~pes20/ppc-supplemental/test7.pdf.

[13] Memory_order - cppreference.com. [Online]. Available: https://en.cppreference.
com/w/c/atomic/memory_order (visited on 09/22/2021).

[14] Intel 64 Architecture Memory Reordering Whitepaper, Aug. 2007. [Online]. Available:
https://www.cs.cmu.edu/~410- f10/doc/Intel_Reordering_318147.pdf
(visited on 09/20/2021).

[15] “The SPARC Architecture Manual Version 8,” p. 295,

[16] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: X86-TSO,”
in Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, Eds., vol. 5674, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 391–407, isbn: 978-3-642-03358-2. doi: 10.1007/978-3-642-03359-9_27.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-03359-
9_27 (visited on 09/20/2021).

[17] ARMv8-A Memory systems. [Online]. Available: https://developer.arm.com/
documentation/100941/0100/The-memory-model?lang=en (visited on 10/04/2021).

[18] LLVM Users. [Online]. Available: https://llvm.org/Users.html (visited on
10/03/2021).

[19] The LLVM Compiler Infrastructure Project. [Online]. Available: https://llvm.org/
(visited on 10/03/2021).

[20] Clang Description. [Online]. Available: https://clang.llvm.org/docs/CommandGuide/
clang.html (visited on 11/13/2021).

[21] Clang Code Generation Options. [Online]. Available: https://clang.llvm.org/
docs/CommandGuide/clang.html#code-generation-options (visited on 11/14/2021).

[22] LLVM FAQ. [Online]. Available: https://llvm.org/docs/FAQ.html#can-i-
compile-c-or-c-code-to-platform-independent-llvm-bitcode (visited on
10/03/2021).

46

https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/TC.1979.1675439
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://en.cppreference.com/w/c/atomic/memory_order
https://en.cppreference.com/w/c/atomic/memory_order
https://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
https://doi.org/10.1007/978-3-642-03359-9_27
http://link.springer.com/10.1007/978-3-642-03359-9_27
http://link.springer.com/10.1007/978-3-642-03359-9_27
https://developer.arm.com/documentation/100941/0100/The-memory-model?lang=en
https://developer.arm.com/documentation/100941/0100/The-memory-model?lang=en
https://llvm.org/Users.html
https://llvm.org/
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html#code-generation-options
https://clang.llvm.org/docs/CommandGuide/clang.html#code-generation-options
https://llvm.org/docs/FAQ.html#can-i-compile-c-or-c-code-to-platform-independent-llvm-bitcode
https://llvm.org/docs/FAQ.html#can-i-compile-c-or-c-code-to-platform-independent-llvm-bitcode

Bibliography

[23] D. Howells, Re: [RFC][PATCH 0/5] arch: Atomic rework. [Online]. Available: https:
//yhbt.net/lore/all/21984.1391711149@warthog.procyon.org.uk/ (visited
on 09/23/2021).

[24] Re: [PATCH 00/22] add support for Clang LTO - Marco Elver. [Online]. Available:
https://lore.kernel.org/linux- arch/20200630191931.GA884155@elver.
google.com/ (visited on 10/16/2021).

[25] Building Linux with Clang/LLVM. [Online]. Available: https://www.kernel.org/
doc/html/latest/kbuild/llvm.html (visited on 09/23/2021).

[26] LLVM Language Reference Manual - Volatile. [Online]. Available: https://llvm.
org/docs/LangRef.html#volatile-memory-accesses (visited on 09/26/2021).

[27] Rwonce.h, Sep. 2021. [Online]. Available: https://github.com/torvalds/linux/
blob / 58e2cf5d794616b84f591d4d1276c8953278ce24 / include / asm - generic /
rwonce.h (visited on 09/23/2021).

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition, 3rd. The MIT Press, 2009, isbn: 978-0-262-03384-8.

[29] LLVM PostDominatorTree Class Reference. [Online]. Available: https://llvm.org/
doxygen/classllvm_1_1PostDominatorTree.html (visited on 10/30/2021).

[30] InstVisitor.h, LLVM, Oct. 2021. [Online]. Available: https://github.com/llvm/
llvm-project/blob/d054b80bd3ab1a78d1a870f941024429273d2a83/llvm/include/
llvm/IR/InstVisitor.h#L33 (visited on 10/25/2021).

[31] F. Hahn, D91188 Add !annotation metadata and remarks pass. [Online]. Available:
https://reviews.llvm.org/D91188 (visited on 09/13/2021).

[32] LLVM PassBuilder Class Reference. [Online]. Available: https : / / llvm . org /
doxygen/classllvm_1_1PassBuilder.html (visited on 11/13/2021).

[33] P. E. McKenney, T. Riegel, J. Preshing, H. Boehm, N. Clark, O. Giroux, L. Crowl,
J. Bastien, and M. Wong, Marking memory order consume Dependency Chains, 2017.
[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2017/p0462r1.pdf (visited on 09/21/2021).

[34] P. E. McKenney, T. Riegel, J. Preshing, H. Boehm, C. Nelson, O. Giroux, and
L. Crowl, P0098R0: Towards Implementation and Use of Memory Order Consume, 2015.
[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2015/p0098r0.pdf.

[35] A. Stern, Re: Potentially Broken Address Dependency via test_bit() When Compiling
With Clang. [Online]. Available: https://lore.kernel.org/all/20211028143446.
GA1351384@rowland.harvard.edu/ (visited on 11/06/2021).

47

https://yhbt.net/lore/all/21984.1391711149@warthog.procyon.org.uk/
https://yhbt.net/lore/all/21984.1391711149@warthog.procyon.org.uk/
https://lore.kernel.org/linux-arch/20200630191931.GA884155@elver.google.com/
https://lore.kernel.org/linux-arch/20200630191931.GA884155@elver.google.com/
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://llvm.org/docs/LangRef.html#volatile-memory-accesses
https://llvm.org/docs/LangRef.html#volatile-memory-accesses
https://github.com/torvalds/linux/blob/58e2cf5d794616b84f591d4d1276c8953278ce24/include/asm-generic/rwonce.h
https://github.com/torvalds/linux/blob/58e2cf5d794616b84f591d4d1276c8953278ce24/include/asm-generic/rwonce.h
https://github.com/torvalds/linux/blob/58e2cf5d794616b84f591d4d1276c8953278ce24/include/asm-generic/rwonce.h
https://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html
https://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html
https://github.com/llvm/llvm-project/blob/d054b80bd3ab1a78d1a870f941024429273d2a83/llvm/include/llvm/IR/InstVisitor.h#L33
https://github.com/llvm/llvm-project/blob/d054b80bd3ab1a78d1a870f941024429273d2a83/llvm/include/llvm/IR/InstVisitor.h#L33
https://github.com/llvm/llvm-project/blob/d054b80bd3ab1a78d1a870f941024429273d2a83/llvm/include/llvm/IR/InstVisitor.h#L33
https://reviews.llvm.org/D91188
https://llvm.org/doxygen/classllvm_1_1PassBuilder.html
https://llvm.org/doxygen/classllvm_1_1PassBuilder.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0098r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0098r0.pdf
https://lore.kernel.org/all/20211028143446.GA1351384@rowland.harvard.edu/
https://lore.kernel.org/all/20211028143446.GA1351384@rowland.harvard.edu/

Bibliography

[36] LLVM: MemoryDependenceAnalysis Class Reference. [Online]. Available: https:
//llvm.org/doxygen/classllvm_1_1MemoryDependenceAnalysis.html (visited
on 10/04/2021).

[37] J. Bastien and P. E. McKenney, P0750r1: Consume, Nov. 2018. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
(visited on 11/08/2021).

[38] P. E. McKenney, M. Wong, H. Boehm, J. Maurer, J. Yasskin, and J. Bastien,
Proposal for New memory order consume Definition, Feb. 2017. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
(visited on 09/22/2021).

[39] P. Zijlstra, [RFC] LKMM: Add volatile_if(), Apr. 2021. [Online]. Available: https:
/ / lore . kernel . org / lkml / YLn8dzbNwvqrqqp5 @ hirez . programming . kicks -
ass.net/ (visited on 11/08/2021).

[40] M. Desnoyers, [RFC PATCH] LKMM: Add ctrl_dep() macro for control dependency,
Sep. 2021. [Online]. Available: https://lore.kernel.org/all/20210928211507.
20335-1-mathieu.desnoyers@efficios.com/T/#m782fa8f16d5763b54daa87b73372ab9df0883b25
(visited on 11/08/2021).

[41] M. Ojeda, [RFC] Rust support, Apr. 2021. [Online]. Available: https://lore.
kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/ (visited on
11/08/2021).

[42] P. E. McKenney, So You Want to Rust the Linux Kernel? Sep. 2021. [Online]. Avail-
able: https://paulmck.livejournal.com/62436.html (visited on 10/09/2021).

[43] XNU use of Atomics and Memory Barriers, Apple, Nov. 2021. [Online]. Available:
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/
doc/atomics.md (visited on 11/08/2021).

[44] XNU atomic_private_arch.h, Apple, Nov. 2021. [Online]. Available: https://github.
com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/
libkern/os/atomic_private_arch.h (visited on 11/08/2021).

[45] Android - Building Kernels. [Online]. Available: https://source.android.com/
setup/build/building-kernels (visited on 11/08/2021).

48

https://llvm.org/doxygen/classllvm_1_1MemoryDependenceAnalysis.html
https://llvm.org/doxygen/classllvm_1_1MemoryDependenceAnalysis.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
https://lore.kernel.org/lkml/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net/
https://lore.kernel.org/lkml/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net/
https://lore.kernel.org/lkml/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net/
https://lore.kernel.org/all/20210928211507.20335-1-mathieu.desnoyers@efficios.com/T/#m782fa8f16d5763b54daa87b73372ab9df0883b25
https://lore.kernel.org/all/20210928211507.20335-1-mathieu.desnoyers@efficios.com/T/#m782fa8f16d5763b54daa87b73372ab9df0883b25
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://paulmck.livejournal.com/62436.html
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/doc/atomics.md
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/doc/atomics.md
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/libkern/os/atomic_private_arch.h
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/libkern/os/atomic_private_arch.h
https://github.com/apple/darwin-xnu/blob/2ff845c2e033bd0ff64b5b6aa6063a1f8f65aa32/libkern/os/atomic_private_arch.h
https://source.android.com/setup/build/building-kernels
https://source.android.com/setup/build/building-kernels

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Introducing Memory Consistency Models
	Sequential Consistency
	Relaxing Memory Consistency

	Memory Consistency Models on the Language Level
	The C Memory Consistency Model

	Memory Consistency Models on the Architecture Level
	Total Store Ordering
	Weak Memory Consistency
	Ambiguities in Memory Consistency
	Mechanisms That Influence Reordering on the Architecture Level

	The LLVM Project
	The Philosophy of LLVM
	An Overview of Clang
	LLVM Intermediate Representation

	Potentially Broken Dependency Orderings in the Linux Kernel
	The Linux Kernel Memory Model
	Clang and the Linux Kernel

	System Overview
	Design
	Source-Level Dependency Orderings in LLVM IR
	Algorithmic Approach
	The Annotation Pass
	The Verification Pass
	Breath-First Search for Annotation and Verification of Dependencies
	Building the Dependency Chains
	Handling Volatile Loads and Stores
	Interprocedural Analysis

	Implementation
	Infrastructure
	Data Types
	Potential_Dependency_Half Objects
	Dependency_Half Objects
	BFS_Context Objects

	The InstVisitor Pattern
	The General Instruction Case
	The LoadInst and StoreInst Cases
	The handle_load_store() Function
	The CallInst Case
	The ReturnInst Case
	Explicitly Skipped Cases

	Annotation With and Verification of Metadata
	Representing Dependency Annotations as Strings
	The addMetadataToPair() and add_annotations() Functions
	Verifying Dependency Annotations With handle_annotations()

	Breaking Dependencies for Testing - The insertBug() Function
	Determining Reachability
	Printing Broken Dependencies
	Clang Integration
	Running the Passes

	Evaluation
	Experimental Setup
	Overheads
	Current Restrictions
	Testing Our Implementation
	Address Dependencies
	Control Dependencies

	Findings
	Annotated Versus Verified Dependencies
	Dependencies Flagged as Potentially Broken

	Implementation Improvements

	Related Work
	Addressing Consume Semantics on the Language Level
	Linux Kernel-Specific Approaches
	Rust in the Linux Kernel
	XNU-Darwin Kernel

	Future Work
	Conclusion
	List of Figures
	List of Algorithms
	Bibliography

